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SECTION 1

INTRODUCTION

This paper describes an algorithm for solving the general

. nonlinear programming problem. The method is an extension of the
accelerated multiplier method described in Ref. 1. The algorithm
combines aspects of the multiplier method proposed by Powell (Ref. 2)
and independently by Hestenes (Ref. 3), with the gradient projection
algorithms suggested by a number of authors including Fletcher (Ref. 4)
and Murtagh and Sargent (Ref. 5). The algorithm deals with inequality
constraints directly, while retaining the favorable numerical properties
of the multiplier methods. Search directions are computed using a
projection-like formula which avoids the ill-conditioning in penalty
function methods reported by Fletcher and McCann (Ref. 6) and ad-
dressed by Biggs‘ (Ref. 7) and Murray (Ref. 8). The convergence of
the multiplier method is accelerated by using a gradient projection

technique to solve the constraints.

The problem of interest in this paper is to determine the n-vector

x that minimizes the scalar function,

£(x) = £(x3,..., xp) (1)

called the objective function, subject to the equality constraints
! c;(x) = 0, = ik (2)

and the inequality constraints

cilx) 2 0 i=(k+l),...,m. (3)

, The functions f(x) and ci(x) are assumed continuously differentiable
1

to second order in the region

Xy Ex% %y (4)

where X, and xy are the specified lower and upper bounds. Bounds
determine a region of computability and, unlike constraints, cannot

be violated during the iterative process.
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Define the Lagrangian function,

Lix, A) = f(x) + cT(x) A (5)

where c(x) is the m-vector of all constraints and A is the m-vector

of Lagrange multipliers. At the optimum point (x*, )\*)

VL, M) = gx®) + Gix') A =0 (6)

where VL is the gradient vector of the Lagrangian function with
respect to x, g(x) is the gradient vector of f(x), and the n x m Jacobian

matrix is given by

rbcl (i bcm-
G = Lvey, o vvyve 1= . i : @
bc! dem
Ox an
Furthermore,
.\’:ci(x*)=0 12l o .y I (8)
where
*
Ai 0 i=(ktl), .. .,m. (9)

In order to distinguish constraints that are active at a solution,

define the set

B* = {ilce™ =0, ieflz,...m I}, (10)




called the basic set of constraints. An estimate B of the basic set of

constraints shall be referred to as a basis. Clearly B* contains all '}
equality constraints. If the gradients of the constraints in the basis
are linearly independent at the solution, then (6), (8), and (9) constitute
the Kuhn-Tucker necessary conditions for the existence of an optimum.

Most nonlinear programming algorithms proceed by obtaining

a sequence of points which either satisfy the criteria (8) which we shall
refer to as the constraint condition or the condition (6) which we shall | 4

refer to as the Lagrangian condition. Projected gradient algorithms,

for example, attempt to satisfy the constraints at each step while moving
toward satisfaction of the Lagrangian condition. In contrast, penalty
function and multiplier methods attempt to satisfy the Lagrangian
condition and then move toward constraint satisfaction. The gradient
projection-multiplier method to be described cycles between satisfying
the Lagrangian condition and the constraint condition.

Points satisfying the Lagrangian condition or the constraint
condition are located using an unconstrained optimization algorithm.
When the algorithm is applied to the minimization of an augmented
objective function, a point satisfying the Lagrangian condition can be
located. A point satisfying the constraints can be found by applying the
same algorithm to the penalty function alone. The algorithm requires
both function and gradient information and is designed for the class of
problems in which the function and gradient evaluations are relatively
expensive from a computational standpoint.

Section 2 describes the unconstrained algorithm, and Section 3
discusses how the procedure is applied to constrained optimization.
The detailed description of the constrained optimization algorithm is in

Section 4. Section 5 presents numerical experience with the approach.




SECTION 2

UNCONSTRAINED OPTIMIZATION ALGORITHM

In this section, the unconstrained optimization algorithm
developed in Ref. 1 is modified somewhat. Specifically, we are

concerned with the following augmented objective function:

Jix, A, 1) = £(x) + cX(x) A + rP(x) = L(x, A) + r P(x), (11)

where r is a scalar referred to as the penalty weight, A is an m-vector

of estimates of the Lagrange multipliers, and the penalty function is

defined by
l Pix) = Z ciz = ¢ X, Zi 2(x), (12)
'i i€B i€ B

whete S (x) = min [0, c; (x) 1, (13)

and B ', the complement of B, is the set of constraints not in the basis.

Expressions for the first and second derivatives are obtained
by differentiation of (11). Thus,

VI =9YL+r VP (14)
|
f where
VL =g+ GA (15)
and
vp= L ZCi (x) Vci (x)
ieB
+ T 22, (x) VS (x). 16
ie ! ; =

The Hessian matrix is

H=T+r (U+V), (17)

R i sl : 4 [rr— il




where T = V2L, (18)

U=Z 2¢;x)v%ci(x) 1 T 2%xvEE (x), (19)
i€B i€eB'
and .
_ s by T ~ I
V = £ 2Vc¢i(x) Vi (x) + Z  2V¢ (x)Vci(x)". (20)
ieB i€B

When the function J is approximated by a quadratic function,
an estimate of the minimum point can be obtained by locating the
minimum of the quadratic approximation. The gradient at the minimum
point of the approximation must necessarily be zero, and it can be

demonstrated that the gradient condition defines the system of equations
Hs = VJ. (21)

The Hessian matrix H is defined by (17), where the matrices T and U

are approximated using a rank-one recursive formula originally stated

in Ref. 9 and specialized for least squares applications in Ref. 10.

The matrix V can be evaluated from local gradient information.

The search direction vector s is usually obtained by solving the system

(21), and a new estimate of the optimum point constructed according to
X =x - ps. (22)

The scalar P is determined by a one-dimensional search procedure.
Thus the unconstrained optimization algorithm proceeds by taking a
series of steps defined by (22), where at each iteration the Hessian
matrix H is constructed as previously described, and the direction
vector s is determined from (21). The current method is unique in
that a different method for the determination of the search direction

vector is proposed.
Define the jth element of the vector of constraints ¢(x), as
i€B
&j(x) = cilx) if or
ieB' and ci(x) <0,

where j=1...m, m < m. (23)

-10-




The m constraints in the vector ¢ shall be referred to as active con-
straints. Using a similar notation for the corresponding
grailients, define the Jacobian matrix of active constraints (3, and (14)

becomes
vIi=vL+2rG ¢ (24)
where the definition (16) has been used. In like fashion, if we define

A=T+rU, (25)

the expression for the Hessian matrix (17) is

H=A+2r GG . (26)
Combining (21), (24), and (26) one obtains the system of equations

a A A A

(A+2rGGT)s Vi + 2r Ge,
Define the augmented system of equations

VL + 2rGc

G
T
e 0
G ZrI

where the vector \ has a dimension equal to the number of columns in

G or the number of active constraints. Iis the m x m identify matrix.

Let us show: (a) that the vector s obtained by solving (27) is
equal to that obtained by solving (28), and (b) that the vector s obtained
by solving (28) approaches the projected gradient direction as r becomes
large. To indicate that the solution of (27) is equal to that obtained from
(28), we employ the formula for the inverse of a matrix in terms of

submatrices:




AP o' B S b o A i P i b M ibn

where
g iy S 6h)
o (A+2r GG")
C12 s 2y C“G
~ 27 -
sz = 4r G C“G-ZrI.

Clearly from (28) and (29)

s = A+ 2SN L+ 2 G (30)

which is the solution obtained from (27).

To investigate the limiting behavior it is convenient to expand

(28) to form

AN 3 v A A
As + GX L + 2r Gc (31)
and
AT 1 ~
G’ s -ir)» = 0, (32)

It has been demonstrated by Fiacco and McCormick (Ref. 12),
that

lim 2 £& = 2
r—o | (33)

where \ is the vector of Lagrange multipliers. Assume that
U = 0 (which is reasonable for large r), so that A is independent of r.

Applying this limiting expression, (31) becomes

As = VL. (34)




Furthermore we can write (32) as

G"s= c. (35)

Making use of the definition of VL from (15) it follows that (34} and

(35) can be written as

A & s g
'\T ~ = ~ . (36)
G O -A C

Solution of this system using the same partitioning formulas used in

(29) results in the standard projected gradient search direction.

Having considered the limiting behavior, it appears that there
is some advantage to determining the search direction using the
augmented system (28) instead of the system (27). Specifically, the
condition number of the augmented system should approach a constant
value as r becomes large, since the system (28) approaches the
system (36). In contrast, Fletcher and McCann (Ref. 6) report that
the condition number of the system (27) becomes infinite as r increases.
Thus, at the expense of solving the larger system (28), the ill-

conditioning associated with the solution of (27) can be avoided.

A second advantage of the proposed method is the fact that it is
unnecessary to assume that A is positive definite. Consequently, the
suggested approach is applicable when methods requiring inversion
or Cholesky decomposition of A are not. For example, a linear
objective function poses no difficulty in the new method, since it is not

necessary-that A have full rank.

Having discussed the general procedure for computing the search
direction vector, let us make some observations pertinent to specific
applications. First, it should be clear that the general algorithm is
applicable to unconstrained optimization problems if we set m = 0 and
r = 0. Nonlinear least squares problems can be solved using the
algorithm if we set f(x) =0, VL =0, andr =1 for m 2n. Further-
more, the algorithm can be used to satisfy the constraints in con-

strained optimization by posing a least squares problem with m <n

8=




and VL = 0. With two exceptions, the search direction is determined
from (28). The first exception involves the nonlinear least squares ’
case when the matrix U = 0. In this instance, it is numerically preferable '
to apply the linear least squares algorithm directly to (35). The second
exception occurs when solving constraints in a constrained optimization
problem with U =0 and ;n < n. In this situation we solve (36), which
is the limiting form of (28).
It should be noted at this point tr:-t any technique for solving |
linear systems can be applied to (28). For the class of problems of
interest to the author, the computational cost of evaluating the function i
and gradient is far greater than the cost of solving the system of
equations. Consequertly, in the computer implementation, the system "‘
(28) is solved using the linear least squares procedure decscribed in
Ref, 13,
To summarize, an algorithm for finding the unconstrained
minimum of the augmented objective function (11) has been outlined. i
The algorithm consists of a sequenca of steps given by (22) in the
directions defined by the vector s. The vector s is computed by solving
the augmented system (28) subject to the exceptions noted above. The

Hessian matrices are generated recursively using a rank-one formula

e il i b s v N e o e N 2

as described in the references.

-14 -




SECTION 3

APPLICATION TO CONSTRAINED OPTIMIZATION

Having developed a general unconstrained optimization algorithm,
let us consider its use in an overall nonlinear programming method. It
has been established that a point which minimizes the augmented objective
function (11) also satisfies the Lagrangian condition (6) for specified
penalty weight r and multipliers \. It was indicated above that a point
satisfying the constraint condition (8) could be determined by minimizing
J, provided that we set I{(x,\) =0 and r = {. Since for m < n there are
fewer constraints than variables, in general, there is no unique solution
to the constraints. In order to make the point on the constraint surface
unique, it is also required that the local quadratic approximation to the
objective function be minimized. The search direction determined from
(28) or (36) does, in fact, determine a unique point which is the exact
solution when the constraints are linear and the objective function is
quadratic. In fact, the aécelerated multiplier method of Ref. 1 uses a
single quadratic-linear step of the form (36). A principle difference
between the new algorithm and that of Ref. 1 is the repeated use of the
quadratic-linear steps until a point satisfying the constraints is located.

The unconstrained minimization algorithm requires a specified
basis estimate B and specified multiplier estimates \. Estimates of
the multipliers are obtained by minimizing the error in the Kuhn-Tucker
conditions. The multiplier estimates are then used to construct an esti-
mate of the basis. The basis determination process computes multipliers
and constructs a basis estimate at any point x. Details of the process
are described in Ref. 1.

-15-
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SECTION 4 ‘
THE GRADIENT PROJECTION MULTIPLIER ALGORITHM f
The basic steps of the gradient projection multiplier algorithm are: ’:

Step 1. Lagrangian Phase: For a fixed basis Bk, fixed multipliers
)\k, and fixed penalty weight r*  minimize the augmented objective
function (11) using the unconstrained optimization algorithm given in

Section 2. Call the solution x . 3

Step 2. Basis Determination: Keeping % fixed, compute a new basis |

B and multipliers 5 using the procedure described in Ref. 1.

Steg 3. Constraint Phase: Beginning at x with the fixed basis B,

minimize the augmented objective function (11) with L =0 and r = 1.

k+tl

Call the solution x o If P(xk+l) # 0, constraints may be inconsistent.

Step 4. Basis Determination: Keeping xitl fixed, determine a new
basis BXT1 and multipliers b using the procedure described in
Ref. 1. When checking for inconsistent constraints, B]L<+1 must be

different than B; if not, terminate.

Step 5. Convergence Test: e(x, ) <6) and 0, < 6, where e(x, \) is
the absolute error in the Kuhn-Tucker conditions (6) and (8), and 0. is an
estimate of the resolution error in the variables x and A. (cf. Ref. 1).

Step 6. Penalty Weight Definition: If AR BX, keep penalty weight

unchanged, i.e., set rktl - K, Otherwise, increase penalty weight
g

(cf. Ref. 1),

Step 7. Update Information: Set k = k+1, xk = xk+1, Ak . Kk+l,

Bk = Bk+1

A number of points regarding the implementation of the

, etc. Return to Step 1.

overall algorithm now deserve clarification. First, observe that
current gradient and Hessian matrix information is used to

initiate the different operations. For example, the Hessian matrices
generated by the unconstrained algorithm during the Lagrangian phase
can be used to initiate the penalty minimization in the constraint phase.

Secondly, when there is an indication of inconsistent constraints, the

-17 - ‘M
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basis determination procedure constructs a new basis by deleting all

satisfied constraints from the old basis. If no constraints can be

deleted, the algorithm terminates in an error mode.

The philosophy of the algorithm is to alternately satisfy the
Lagrangian condition V L(x, A) = 0 and the constraint condition.
During the constraint phase of the algorithm the search directions are
computed using the assumption that the objective function is quadratic
and the constraints are linear, resulting in the projected gradient
directions. The penalty weight is not increased once the correct basis
is determined; however, it is allowed to increase during the basis
determination process. This procedure prevents cycling between two
or more incorrect estimates of the basic set of constraints. Further-

more, the correct basis B* is usually identified quickly because of the

forced increase in the penalty weight.

-18-
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SECTION 5

NUMERICAL EXPERIENCE

The algorithm described in the previous section has been
implemented in a digital computer program. A rather extensive set of
test problems have been solved using a CDC 7600 digital computer.

This section presents the results of this numerical experience. Most

of the problems have been drawn from the literature, and it is felt

that the mathematical complexity and nonlinearity is fairly representative
of the kind of problems encountered in practice. However, the problems
do have two significant attributes which are distinct from those commonly
encountered in engineering problems.

First, the function evaluation process is relatively inexpensive,
and errors in the evaluation process are on the order of the machine
accuracy. Similarly, accurate gradients can be obtained cheaply for
the test problems. For practical problems, however, function evaluations
can be quite costly and may contain inaccuracies significantly larger
than the machine accuracy. (A typical trajectory optimization example
is described in Ref. [14.) Because the function evaluations for these
practical problems are so costly with respect to the computational ex-
pense of the optimization algorithm, we have used the number of function

evaluations as a measure of algorithm effectiveness.

Secondly, the required gradient information is obtained by
evaluating corresponding analytically derived partial derivative
expressions. Practical problems, on the other hand, may require
that gradient information be evaluated using numerical methods. For
this reason, no attempt has been made to present an ''equivalent'' number
of function evaluations, because such a quantity is highly dependent upon
the numerical differentiation procedure. Such quantities as perturbation
sizes and error tolerances can greatly influence the accuracy of
numerical derivatives and consequently obscure the overall behavior of
the optimization process. If gradient information must be obtained
numerically, one can expect a two-fold degradation: (1) because each
gradient evaluation will require one or more additional function evaluations,
and (2) because inaccurate gradient information may necessitate more

optimization iterations.

-19-
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The test problems given in the appendix have been organized
into four separate categories: (l) unconstrained, (2) nonlinear least
squares, (3) equality constrained, and (4) inequality constrained. The
results are presented in Tables 1 through 4 in condensed form for each
of the categories. Specifically, we present the number of function and
gradient evaluations required for convergence. For example, the first
problem was solved by evaluating the objective function, constraints, and
the corresponding gradient vectors at four points. For all problems,
convergence is defined as in Ref. 1 with 51 = 62 = 10-5, which guarantees
five significant figures accuracy in the solution, and absolute satisfaction
of the constraint and Lagrangian conditions to within 10-5. The number
of cycles of the algorithm is presented for the constrained examples. It
is the author's opinion that despite the theoretical elegance of a general
mathematical programming algorithm, one can not espouse its numerical
effectiveness without solving a set of test problems at least as broad as

those given.

-20-
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[ SECTION 6

r SUMMARY AND CONCLUSIONS

This paper describes a gradient projection-muitipiier method

for solving the general nonlinear programming problem. The algorithm

poses a sequence of unconstrained optimization problems which are

Ill conditioning of the search direction computation is avoided by using
an expression which approaches the projected gradient direction for
large penalty weights. The unconstrained algorithm is used to locate
points where the Lagrangian condition VIL(x, A) = 0 is satisfied by

minimizing the augmented objective function. Points satisfying the

1 i constraints are located by applying the unconstrained algorithm to the
| penalty function. New estimates of the Lagrange multipliers and basis
constraints are made at points satisfying the Lagrangian condition and
the constraint condition. The penalty weight is increased only when
necessary to prevent cycling. Although we do not prove quadratic

convergence, numerical experience tends to confirm this assertion.

solved using a new projection-like formula to define the search directions.




Table 1. Unconstrained Problems
Problem No. Function and Gradient Evaluations
1 4
2 49
3 57
;~ + 34
5 12
i 6 8
‘ 7 28
| 8 17
t 9 113
4 10 6
| 11 54
Table 2. Nonlinear Least Squares Problems
i Problem No. Function and Gradient Evaluations
| 1 6
! 2 27
3 11
4 9
f 5 2
% 6 15
7 6
8 22
) 9 12
' 10 10
’ { 11
“ 12
! 13 15
‘B
| |

2 i 4




Table 3. Equality Constrained Problems
Problem No. Function and Gradient No. of Cycles
Evaluations

1 8 1

2 10 1

3 21 2

4 17 2

5 L 1

| 6 19 2
| 7 18 g
8 16 2

9 6 1

10 6a 1

11 18b 1

12 27 1

’ 13 188 2
| 14 46 2
15 60 2

r 16 141 2
17 39 1

a Algorithm terminated at a saddlepoint (VP(x*) = 0, although
d | P(x*) #0, and P(x) = 0 does exist).

*®
b Inconsistent constraints (P(x ) = 0 does not exist).




Table 4. Inequality Constrained Problems . ‘ ‘

Problem No. Function and Gradient No. of Cycles =
Evaluations
1 21 1 r
2 5 1 :
3 22 1
4 28 2
5 18 1 F
6 58 2 s
7 50 4 | 3
8 50 2
» 9 32 3 4
‘ 10 28 2 |
1 1 43 1 |
;‘I 12 43 :
'!; 13 77 3
L’ 14 27a 1 |
i 15 25 2 '
k 16 17a 1
17 40 3 f
18 48 3 |
19 21 2 ' ‘
4 20 65 4
21 13 1
22 14 2
23 33 2
24 48 3
25 38 2
E 26 29 2
4 | 81 1
28 318 1
29 9 1
_ 30 79 1
‘i 31 86 1
1 32 29 1
. { % 33 43a 1 x
| 34 1
g a Constraint gradients are linearly deapendent aaj’!.—
_24-
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APPENDIX

NONLINEAR PROGRAMMING TEST PROBLEMS

This appendix presents the set of test problems used to assess
the effectiveness of the nonlinear programming algorithm described. ;
The problems are organized into four categories: (1) unconstrained
problems, (2) nonlinear least squares problems, (3) equality constrained

problems, and (4) inequality constrained problems.

When no information is given to the contrary, one can assume
all quantities used by the numerical processes are scaled (in the
sense described in the Appendix of Ref. 9) in the range -20 < x s 20.
Unless noted otherwise, the initial penalty weight is r® = 1, and the
initial basis is assumed to be empty, i.e., B° = {® ]. The points X
presented are converged values where convergence is defined in Section 7 of
Ref. 1, with 61 = 62 = 10-5. When the exact solution is known, its value
is presented following the computationally obtained value. To conserve
space, problem statements appearing elsewhere in consistent notation

are merely referenc=d.
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A.l IUJNCONSTRAINED PROBLEMS

1. Ref. 15
Minimize f(x) = xlz - lexz + szz
-50<x <50
x° = (4,2)
x = (2.1316 x 10714, 1.0658 x 10714 ; (0, 0)
£ = 2.27119x107%8 ; o

no scaling.

2. Ref. 16
2 2

Minimize f(x) = 100 (x, - x2) + (I - x)

Yo el 2 1)

(1., L.) 5 (L1)

6.6421x10-18 ; 0

" »®
n "

L)
]

no scaling.

3. Ref. 15

2 2

= (xl + lez) + 5(x3 - x4)
4 4
+ (x2 - Zx3) + lO(xl - x4)

Minimize £(x)

-50=<x<50
x° = (3,-1,0,1)
X =
’ (0000000)

£ = 2.39d3x106"'% ; o

no scaling.

.28-

¥ o= (18159 x 107, -1.8159x 1075, 9.398x 10™%, 9.3980 x 10°%)




B i

2

(1,0,0)

4, Ref. 15
7.5 2
Minimize f(x) = 100 j(x; - 106)" + (r-1) +ox,
where
=}
tan (xZ/xl) x;>0
2710 =
ﬂ-+tan-l(x /x,) x,<0
T b 1
» 2 2.Z
r = (xl + xz)
-Ssxl.xZSS
-Z.5.<.x357.5
x° = (-1,0,0)
x = (L., 5.2171 x 1671%, 6.0920 x 10719)
£ = 72.9033x10°18 ; o
no scaling.
5. Ref. 17
2 2 2
Minimize f(x) = (x; - x,) + (1 -x))
-100<x <100
x¥ & (=2, =8}
2 -1 -1
x = {9.9999x 10 *, 9.999=10 ) ;: .1)
£ = 2.4809x10°'% ; o

no scaling.

-29-
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6. Ref. 17
22 2
Minimize f(x) = (x2 -xl) + 100 (1 -xl)
-100=x =100
x° = (1,5)
PSR | A TS B )
R B R LR
no scaling.
7. Ref. 17
32 2
Minimize f£(x) = IOO(x2 -xl) + (l-xl)
-100<x<100
x7 = (=20
i -1 -1
x = (9.9999x10 °, 9.9999x 10 ) ; (1,1)
&= 2oizxo® ;0
no scaling.
8. Ref. 18
3 i 2
Minimize f(x) = Z [ai 9y (l-xz)]
i=1
where
a, = Ne S a, = 2.25 ag = 2.625
-100=x<100
x® = (8,.2)
"
x = (3005) H (3005)
£ = 1,7257x10°%° ; o

no scaling.
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9. Ref. 20

2
Minimize f(x) = 100 (x2 - % )2 + (1 - xl)z + 90 (x4 - x32)2

+ (1 - x3)z +10.1 [.(‘xz =12+ (x4 - 1)2] |

+19.8 (x, = 1) (x, - 1) §

-10 £x 5 10 | |
x° = (-3, -1, -3, -1)
o wfl N

£ = .1969 x 10716; 0

no scaling.

10. Ref. 21 10
, ‘; ; Minimize f£(x) =E {[ln (xi - 2% JZ + [1n (10 - xi)JZ} o
i=1 |
1% i
* 10 '
-(n xi) 0.2 t
i=1

2.001 £x 9,999
x;’=9 S A

* :

x; =9.3503 i=1,...10.
sk

f = -45.778

no scaling.




|
i
§
1l. Ref. 21
s (ug - xp) 2 o # ’3
Minimize f(x) =Z [ exp - -—x—l—— -.01% J I
=l
2/3 - 14
where u; = 25 + (-50 ln . Oli) ,
4
. 1% x, $101 |
i
0 < x, < 25.6 4
|1
| 0 s X3 < B,
1 x® = (100, 12.5, 3) | 8
x* = (50, 25, 1.5) i
= | !
= . s2009x10""; 0 1 3
{ ¥
|
: 3




)

H
]
A.2 NONLINEAR LEAST SQUARES PROBLEMS '
Problems. 1-10: Problems 1-10 in Ref 10. ’
Problem 11. Ref. 19 |
- 21 2
Minimize f(x) = £ ¢ (x)
i=1
where t; = i-1
4 5 |
yi=l+ti+tiz+ti3 Yy v |
2 3 5 :
ci(®) = yj - (xy + xat; + x3t; x4t + xgt, + Xt ) | 4
Xio =0 ; I [ 6 4
x* = (1.00000, 1.00000, 1.00000, 1.00000, 1,00000, 1.00000)
* 1 ‘
* = 13777 = 10”14
No scaling
Problem 12. '
13 2
Minimize f(x) = T <y (x) y
i=1 ﬂ
5
where ci(x) = \/’v?lt {Yi - f.'xlui + exp (xzvi)] ] !
and ug, Vi Wi, and y; are given in Table A-1.
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TABLE A-1
g % b bt Yi
1 0 0 100 2.93 |
2 0 1 100 1.95 |
3 0 2 100 .81
4 0 3 100 .58
5 1 0 50 5.90
6 1 1 50 4.74
7 1 2 50 4.18
8 1 2 50 4.05
9 2 0 25 9.03
10 2 1 25 7.85
11 2 2 25 7.22
12 2.5 2 10 8.50
‘ 13 2.9 1.8 10 9.8l
-10 < x <10

x° = (3.01, -.51)

x = (3.5593, -.13414)

£ = 651,147
No Scaling.

Problem {3. Problem No. 11 in Ref. 10.

~ Sahe S e

T
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A.3

Problems 1-12: Problems 1-12 in Ref. 1. ’

13.

14.

EQUALITY CONSTRAINED PROBLEMS

Minimize f(x) = . 001 x; + X5

2
cl(x) = 105 (xp - x) ) =0 !
-100 s x <100 | 4

x°=(, 1 '

* 6

% = (- 49999 x 1073

, .25000 x 107")

£ = -.249999 x 10°°

No scaling

Minimize f(x) = .001 x; + x,
¢y lx)e <1000 %, > ~100 x,° + %, = 0
1 b | - S S

a 2 2 @
cz(x) = 100 X + 400 X, + X3 -.01 =0

-10 $x S 10
x" =il 1,
x* = (.20908 x 10°°, .44721 x 102, .20000 x 1072

£ = 44721 x 1072

No scaling.




15. Ref. 21 10
Minimize f£(x) =Z X a, + In 5 !
i=1 I x5
j=1
where a, = -6.089 a, = 17. 164 az = -34.054
a, = ~5.914 ag = -24.721 ag = -14.986
a; = ~24.100 ag = -10.708 ag = -26. 662
a0 ° -22.179
cl(x)=xl +sz+2x3 + x¢ + X0 -2 =0
cz(x)= x4+2x5 +x6 + xq -1 =0
c3(x) =x3+x7+x8+ bcg +x10 -1 =0
I.x10™ s xs10
x{ =.1 i=1,...,10
x' = (40668 x 10°L, .14773, .78315, .14142 x 1072, .48524,

1 1

Lottt w1070, 31304 x 1070,

3 27399 x 10~

.96871 x 1071 E

.69317 x 10°

£ = -47.761

no scaling.
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16. Ref. 21 10 10

Minimize £(x) =Z {exi [ai+ x; -ln(z: exj) ]}

i=1 j=1

where the a are given in Problem 15.

cp(x) = €1 + 2e*2 + 2e™3 + e¥6 + ¥10 - 2 = 0

c,y(x) = e¥4 + 25+ X6+ e*7 -1=0
c3(x) =eX3 4+ X7 + X8 +2e59+X10-1=0
-100 < x S 100

%2 = -2.3 fom Poc e 10

1

x' = (-3.2024, -1.9123, -.24441, -15.670, -.72166,

-7.2736, -3.5965, -4.0206, -3.2885, -2.3344)

£ = -47.760

Constraint scaling: w, = 10, 1= 1, 2; 3.

17. Ref. 21
Mirkirlbe finhie 1000 w20 o das ol & kiny =
» 1 - E i B L
2 S
cl(x)=xl +x2+x3 -25=0

cz(x) = 8x1 + l4x2 + 7x3 -56=0
0 £x =100

x° = (2, 2, 2)

| ! x" = (3.5121, .21698, 3.5522)
i
} £ = 961.715
:
' No scaling.
"
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A.4 INEQUALITY CONSTRAINED PROBLEMS

Problems 1-26: Problems 1-26 in Ref 1.

27. Problem 27 in Ref. 1 except with

B® = {9}

Constraint scaling: 4

28. Ref. 20

Maximize f(x) = T B; ¢ x; - z V.. X. X, -2 e

et T L AR T Sl
ci(x)=xi20 1= 1,15

4 5

cife) = Gon +3 QupgEqas ot z;‘J:l " §-18%

15 :

L Gy 8% 20 §=16...20,

where the coefficients @& B, ¥, 6, and € are given in Problem 17 of Ref 1.

-lOSxiSZO 25 Ly ey 10

-100 £ xy, < 100

-38-
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13, 14, 15.

«~10 23 =10 i=
i 1 '
f x2 = .0001 {2t . .15 1#12
.
Xy = 60

x* = (.30000, .33346, .40000, .42832, .22397,

0.. -. 56843 = 10772, 5. 1740, 0., 3.06111, i

: 11.8396, 0., 0., .103%91, 0.)

€K

f -32.3486

Constraint scaling: ’

W 10 for I =6, L2, 13

; W, = 1 otherwise
: 29. Ref. 21
b | a Pl X 2 2
Minimize f(x) = {xl - 1)
g cl(x)=xl-2x2+1=0
. 2 2
é-, cz(x)=-x_l_—xz+l 20
: 4
E -10 Sx s 10
[
' x% = 12, 2
y
%
} x = (.82287, .91143)
3
| £ = 1.3934

no scaling.




3 30. Ref. 21

Maximize £(x) = 75. 196 -3.8112 x| + . 12694 x>

-2.0567 x 1073 le’ $ 1.0345 x 1072 x‘l1 -6. 8306 x,
+.030234 1. 268134 % 1072 » =
. Xlxz -1, X XZXI
3 3 2 4
+ 3.5256 % 1077 x,%, -2.266 x 10 7 X%,
. 2 & -3 3 =5 4
H +.25645 x2 -3.4604 x 10 X5 + 1.3514 x 10 Xy
L(28.106) (x, + 1)°) -5.2375 x 106 %= x
' 2 ' 1 %
5 L16 3
-6.3x108x‘;’ xg +7 %10 1Oxl %,
0 o 6 Tl
+ 3.4054 x 10 X %Xy - 1.6638 x 10 X%y

-2.8673 exp (. 0005 xlxz)

= - &
cl(x) X %, 700 0

¢y(x) = x5 = 5 i £ s
25

ca(x) = (x - 50)% - 5(x, - 55) = 0

<:4(x)=75-x1 2 0
cg(x) = 65 -x, 2 0
0 sx ¥ 200

x® = (90, 10)

3

x =05 65
£ = 58.903

no scaling.
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Ref. 20. p. 31. (Also Ref. 21, p. 401)

Ref. 21
19
a2

Minimize f(x) = z: (yi - yi)
i=1

1/2
% ) ( a,
6.2832 7.658

a. X
1+

exp [x, - B
. "i.658x4 12x1

B = x5 + (1-x3)x,

and the a, and }‘;i are given in Table A-2

<, (x) = X3+ (l-x?’)x4 =20

1%30 “Waee 20

x° = (2, 4, .04, 2)
x* = (12.277, 4.6318, .31286, 2.0293)
2

%

. 74985 x 10~




TABLE A-2

A A
X s ¥; i a, Y
1 o1 . 00189 11 10 . 702
< 1 .1038 12 11 .528
3 2 . 268 1:3 12 . 385
4 3 . 506 14 13 « 257
5 4 <577 15 14 «+ 159
6 5 . 604 16 15 . 0869
7 6 « (25 17 16 . 0453
8 7 . 898 18 17 .01509
9 8 . 947 19 18 .00189
10 9 . 845
33. Ref. 21
Maximize f(x) = .5 (xlx4 - XyXy t X3Xg = XgXg t xgxg - x6x7)
2 2
cl(x) =1-x3-x4 0
e lx) =1 -xg z 0
c3(x) =1 - xé - xz 0
c4(x) =] - x% - (x2 - x9)Z =0
2
cs(x) =1 - (xl - x5) - (x2 - x6) 2 0
2
i c6(x) =1 - (xl - x7) - (xZ - x8) 2 0
2
c7(x) =1 - (x3 - x5) - (x4 - x6) 2 0




T —

B T T

cs(x) z ] = (x3 - x.r)z - (x4 - x8)Z 20

(g
0
—
)
~
!

—1-x$-(x8-x9)zzo '

S TR ST E
1
x* = (.91878, .39476, . 11752, .99307, . 91878,
.39476, . 11752, . 99307, -.60445 x 10714
£ < .8e60z

no scaling.

34. Ref. 21

Minimize f(x) = (x; -2)° + (x, -1)°

2
- >
X, + X, 0

¢, (x)

cz(x) "X = Xy +220

x° = (2, 2)

no scaling. E




